Doubling properties for second order parabolic equations
نویسندگان
چکیده
We prove the doubling property of L-caloric measure corresponding to the second order parabolic equation in the whole space and in Lipschitz domains. For parabolic equations in the divergence form, a weaker form of the doubling property follows easily from a recent result, the backward Harnack inequality, and known estimates of Green’s function. Our method works for both the divergence and nondivergence cases. Moreover, the backward Harnack inequality and estimates of Green’s function are not needed in the course of proof.
منابع مشابه
Doubling Properties for Second Order Parabolic Equations in Memory of Eugene Fabes
We prove the doubling property of L-caloric measure corresponding to the second order parabolic equation in the whole space and in Lipschitz domains. For parabolic equations in the divergence form, a weaker form of the doubling property follows easily from a recent result, the backward Harnack inequality, and known estimates of the Green's function. Our method works for both the divergence and ...
متن کاملGrowth Theorems and Harnack Inequality for Second Order Parabolic Equations
A general approach to both divergence (D) and non-divergence (ND) second order parabolic equations is presented, which is based on three growth theorem. These growth theorems look identical in both cases (D) and (ND). They allow to prove the Harnack inequality and other related facts by general arguments, which do not depend on the structure (divergence or nondivergence) of equations. In turn, ...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملDoubling Properties of Caloric Functions
We obtain quantitative estimates of unique continuation for solutions to parabolic equations: doubling properties and two-sphere one-cylinder inequalities.
متن کاملA note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations
Following the lead of [Carrillo, Arch. Ration. Mech. Anal. 147 (1999) 269–361], recently several authors have used Kružkov’s device of “doubling the variables” to prove uniqueness results for entropy solutions of nonlinear degenerate parabolic equations. In all these results, the second order differential operator is not allowed to depend explicitly on the spatial variable, which certainly rest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999